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Guidance Note on estimating the uncertainty of emission reductions using 
Monte Carlo simulation 
 
 

This guidance note has been prepared by the QUERCA (Quantifying Uncertainty Estimates 
and Risk for Carbon Accounting) project at SUNY College of Environmental Science and 
Forestry using funding from the FCPF 

 
 

Criterion 9 of the FCPF Methodological Framework requires that the uncertainty of the estimate 

of Emission Reductions be quantified using Monte Carlo methods. The FCPF Guidelines on 

Uncertainty Analysis of Emission Reductions describe which sources of uncertainty to 

propagate and provide guidance for conducting Monte Carlo simulations.  

ER Programs differ in both the activities they consider and the methods by which they calculate 

emission factors and activity data.  The sources of uncertainty thus differ, and the calculations 

for correctly combining them will also differ. This document describes the general approach and 

provides a simple example to illustrate the approach. The general approach described here 

includes the following steps: 

● Step 1. Identify sources of values used in the emission reduction estimates and whether 

they are independent or shared 

● Step 2. Identify the uncertainty associated with each of these variables 

● Step 3.  Propagate the uncertainties in the estimate of emission reductions using Monte 

Carlo simulation 

● Step 4.  Evaluate the contribution of each source to the overall uncertainty 

 

The simple example has been provided in Excel and in R to help users to understand this 

guidance and each of the steps. Each situation is unique, and the examples given will need to 

be adapted to the programs in question, but the underlying principles are universal. More details 

on the example are provided in Annex 1.   

This guidance note complements the FCPF Guidelines on Uncertainty Analysis. 

 

Step 1. Identify sources of values used in the emission reduction 
estimates and whether they are independent or shared. 

Following the process by which ER Programs estimated emission reductions, programs should 

identify all the variables used in the estimation of emissions and removals. Table 1 in the FCPF 

Guidelines on Uncertainty Analysis provides a list of the main sources of uncertainty that, at 

minimum, shall be evaluated. In the Monte Carlo simulation, the uncertainties in these variables 

will be combined by sampling from the likely distributions of their values as determined in Step 2 

below.   

To combine the uncertainties of multiple variables correctly, requires understanding which 

variables are used independently and which are shared across multiple calculations. 

Variables and their associated uncertainty sources contribute independently to a particular 

calculation if they are independently derived and are not used for any other variable.  For 

example, tree inventory data are generally collected independently for each stratum or land 

cover type and are not used in the calculations for other strata or land cover types (shown in 

blue in Figure 1.1).   

Other variables and their associated uncertainties are shared across multiple calculations, for 

example, carbon fraction (CF), root:shoot ratio (R:S), and tree allometry variables might be used 

https://docs.google.com/document/d/1VIhiK5iCqCpKb9jKb5VfIlg5AED-AoPD_PwroxlpLTw/edit#bookmark=id.abo1z8ffynpr
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across multiple forest types (shown in red in Figure 1.1).  In that case, carbon densities are 

calculated by a combination of independent and shared sources and are thus partially 

correlated (shown in purple in Figure 1.1) and it is important to represent these correlations 

properly when combining them in error propagation. 

 

Figure 1.1  In calculating carbon densities, inventory data collected in four types of land cover 
are independent (blue).  If the same values of carbon fraction (CF), root:shoot ratio (R:S), and 
tree allometry are used across multiple forest types, these are shared (red).  Uncertainties 
calculated from a combination of independent and shared sources will be partially correlated 
(purple), with correlation coefficients intermediate between 0 (fully independent) and 1 (fully 
shared).   

Whether an uncertainty source should be treated as shared or independent depends on how it 

was collected and how it is used in the calculation. Some programs collect tree allometry data 

independently for each land cover type.  In that case, uncertainties in tree allometry would be 

independent for each cover type (Figure 1.2). Theoretically, carbon fraction and root:shoot 

ratios could be determined independently for each cover type, or a single value could be used 

across forest types.  The conversion of carbon to CO2 is treated as a constant without 

uncertainty, because variability in carbon and oxygen isotope ratios is negligible. 

 

Figure 1 2.  Whether a variable is independent or shared depends on how the data were 
collected.  If allometric equations are specific to each cover type, they are independent.  Carbon 
fraction and root:shoot ratio could be determined separately for each forest type, but if they are 
not, they are shared. 

Since the emission reductions are estimated as the difference between the reference level of 

emissions and the actual monitored emissions, correlation is also relevant between the two 

estimates. For example, if programs use the same emission factors in the reference and 
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monitoring periods, they should be treated as shared (as shown in Figure 1.3).  In contrast, if 

inventory data are collected independently for each time period, the emission factors for the two 

periods are more independent. 

 

Figure 1 3.  Emission factors are derived from carbon densities of the categories of land cover in 
transition.  Many such transitions are possible and the number and degree of correlation of such 
activities will differ by program depending on the design.  Emission factors may be shared 
between the reference level and monitoring period, as shown here.  In estimating the uncertainty 
in the emission reductions, shared sources of uncertainty will share a randomly sampled value 
at each iteration of the Monte Carlo simulation. Uncertainties associated with results based on 
both shared and independent sources will be partially correlated (shown in purple). 

The degree of partial correlation (i.e., the value of the correlation coefficient) that arises from 

combining a mix of shared and independent uncertainty sources can be estimated analytically 

(not covered in this guidance) or by examining the results of Monte Carlo simulation. It is not 

important to know the correlation coefficient of intermediate variables in the calculation. 

However, if the calculation were to begin with partially correlated inputs, such as carbon 

densities, the correlation coefficients would need to be estimated to be propagated correctly 

(see Section 3.2.3).  
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Potential Pitfalls 

Treating uncertainty sources as independent when they are shared will underestimate the true 

combined uncertainty.  In the Simple Example provided in Annex 1, the uncertainty in the ER 

should be 416%.  If the emission factors are treated as independent between the reference 

level and the monitoring period, instead of shared, then a value of 403% is obtained, which is 

incorrect. 

 

Step 2. Identify the uncertainty associated with each of these variables. 

Using the Monte Carlo approach to error propagation requires defining the distributions of the 

variables used in the calculation. There are two ways to generate random samples that mimic 

the likely distribution of a variable. The first is to sample from a defined distribution (a probability 

density function or PDF). The second is to randomly sample values of the variable from a data 

set (bootstrapping). 

 

2.1 Decide between PDF and bootstrap 

It is easier to sample from a defined distribution than to sample from a data set, especially in 

Excel. Sampling from a data set has the advantage that no assumptions are required about the 

nature of the distribution. If the distribution is not normal, then bootstrapping would be more 

accurate, unless the data are not representative. The figure below provides a simple decision 

tree to decide between PDF and bootstrap to generate random samples that mimic the likely 

distribution of a variable. 

 

 

 

Figure 2.1.  Decision tree for choosing whether to sample from data or from a PDF. 
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2.2 Describing uncertainty with a probability density function (PDF) 

A mathematical function can be used to describe the distribution of possible values of a 

variable. Commonly, in the absence of information to the contrary, normal distributions are 

used. A distribution other than normal could be selected if the possible values are not normally 

distributed. For some applications, beta, binomial, gamma, weibull, or lognormal distributions 

best describe the distribution of observations. However, if there are enough data to determine 

that the distribution is not normal, then bootstrapping is also an option. 

In REDD+ carbon accounting, uniform distributions have sometimes been used to describe 

possible values of the carbon fraction (IPCC 2006 Table 4.3) and root:shoot ratio (IPCC 2019 

refinement of 2006 Table 4.4).  For this reason, we provide guidance on how to use a uniform 

PDF.  However, it seems implausible that there is a zero probability of a value outside these 

ranges.  Instead, we recommend that the mean and standard error of the available data be 

used to define a normal distribution.  Alternatively, the values could be sampled by 

bootstrapping. 

In the absence of reliable data, expert judgement may be used to define a PDF. The FCPF 

Guidelines on Uncertainty Analysis of Emission Reductions recommends independently 

consulting at least three experts when the parameter estimate is not available or is not 

representative (e.g. based on research plots). The mean and standard error of the mean of 

expert opinions should be used to define a normal distribution.  Using the range would be 

sensitive to extreme values, and doubling the range (as currently recommended in the 

Guidelines) would inflate the uncertainty of the emission reductions.  Alternatively, the values 

could be sampled by bootstrapping. 

 
2.3 Using the distribution of the data (bootstrapping) 

An alternative to representing the distribution of the inputs analytically is to resample the data, a 

procedure known as bootstrapping (Ephron and Tibshirani 1994) that is illustrated in figure 2.2. 

Values are randomly drawn from the data to create alternative possible data sets with similar 

distributions and the same number of observations.  Each random sample is drawn from all 

possible samples (this is called “sampling with replacement”) because sampling without 

replacement, if drawing the number of observations in the data set, would return the original 

data set every time. This approach requires no assumption of a distribution and is thus most 

true to the measured population. Bootstrapping is especially advantageous when the 

distribution is difficult to define. The drawback to this approach is that the representation of the 

population is only as good as the data, and if the data set is small, it may not accurately capture 

the range of potential values. 

https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_04_Ch4_Forest_Land.pdf
https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/4_Volume4/19R_V4_Ch04_Forest%20Land.pdf
https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/4_Volume4/19R_V4_Ch04_Forest%20Land.pdf
https://docs.google.com/document/d/1tqW8YAj3xaH2xjPWbWirNLIhLe6P_i2_837ymfmLtdU/edit
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Figure 2.2. Random sampling of values from a data set.  The data set has 7 values, which can be 
randomly sampled (with replacement) to create alternative possible data sets. 

 

Potential Pitfalls 

Bootstrap sampling must be configured to match the sampling design. For example, if the 

sampling design is stratified, it would be necessary to bootstrap for each stratum separately and 

produce the overall estimates by combining the stratum information. There could be similar 

issues for cluster sampling. 

Often data are not representative, due to access to sampling locations (close to roads or forest 

edges), or ease of measurement (excavating roots of small trees). This is a potential pitfall both 

for characterizing the data with a PDF and for bootstrapping. In these cases, expert judgement 

should be used to correct for bias in the data.   

 

Step 3.  Propagate the uncertainties in the estimate of emission 
reductions using Monte Carlo simulation 

The FCPF requires the use of Monte Carlo simulation to quantify the effects of uncertain inputs 

on the uncertainty of carbon emission reductions.  Using this approach, the calculation of the 

emission reductions is iterated hundreds or thousands of times, with the inputs varying 

randomly to mimic the uncertainties in the values of all the variables that went into the 

calculation of both the Reference Level and the monitored emissions and removals. As 

described above in Step 2, random samples that mimic the likely distribution of a variable can 

be generated using a defined distribution (a PDF) or by randomly sampling values of the 

variable from a data set (bootstrapping). The distribution of the resulting hundreds or thousands 

of outputs reflects the net effects of the uncertainties in the inputs. 

 

3.1 How to randomly sample from a distribution or a dataset 
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3.1.1 Sampling from a distribution 

For simulating the uncertainty in an input using a defined distribution, the parameters describing 

the distribution are used to generate the random samples.  

 

Distribution Spreadsheet formulas R code 

Uniform RAND() generates random numbers uniformly 

distributed between 0 and 1. 

Generate uniform random numbers between values in 

A1 and A2 using: 

 

   = ($A$1 + RAND()*($A$2-$A$1)) 

Generate n uniform random 

numbers between a1 and a2 

using:  

 

runif(n, min = a1, max = a2) 

Normal NORM.INV(probability, mean, sd) gives an inverse of 

the normal cumulative distribution, at a specified 

probability, mean, and standard deviation (sd).  

 

Combining RAND and NORM.INV gives a random 

sample from a distribution with a specified mean and 

standard deviation.  If the mean and sd are in cells B1 

and B2, use: 

 

   =NORM.INV(RAND(), $B$1, $B$2) 

Given the mean and 

standard deviation (sd) of the 

distribution, generate n 

random samples using: 

 

   rnorm(n, mean, sd) 

 

3.1.2 Sampling from a dataset (bootstrapping) 

For simulating the uncertainty in an input using bootstrapping, each random sample is selected 

from the data set of possible inputs.  

 

Spreadsheet Formula R code 

If 10 data points are in cells A1:A10, you can 

randomly sample 1 of them using: 

      =INDEX($A$1:$A$10,ROWS($A$1:$A$10)*R 

AND()+1,COLUMNS($A$1:$A$10)*RAND()+1) 

  

Since this formula draws a single value at random 

from the specified data set, you need to copy it 

many times to generate a bootstrap sample. Copy 

this formula to sample many observations and be 

copied for as many iterations as needed.  

Given a sample of size n: (c1,c2,c3,...,cn), you can 

generate a vector: 

 

   SampleC<-c(c1,c2,c3,...,cn) 

 

Defining a number of simulations (NS), you can 

generate bootstrap samples (BootstrapSam) by 

generating NS samples of size n sampled of vector 

“SampleC” with replacement: 
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   BootstrapSam <- replicate(NS,  

   sample(SampleC, replace = T)) 

 

3.2 How to sample multiple sources of uncertainty 

To account correctly for independent vs. shared sources of uncertainty (identified in Step 1, 

above) requires assigning the random samples of the input values independently, in the case of 

independent samples (3.2.1), or assigning the same random value in all calculations that share 

that value, in the case of shared sources (3.2.3), at each iteration of the Monte Carlo simulation. 

 

3.2.1 How to assign independent random values 

In the case of independent input variables, random values will be selected independently for 

each variable to represent uncertainty in those variables.  For example, activity data are 

collected independently at each point in time. 

 

Spreadsheet Formula R code 

For independent sources, the cells referenced 

for parameters (e.g. mean and sd in the case of 

a normally distributed source) are not the same: 

 

SourceA: 

A3=NORM.INV(RANDARRAY(1,n),$A$1,$A$2)  

SourceB: 

   B3=NORM.INV(RANDARRAY(1, 

n),$B$1,$B$2)  

 

Cell A4 would have a different random number 

referenced by all the calculations in row 4, and 

so on for all the rows of the simulation. 

For independent sources (SourceA and SourceB), 
random numbers of a specific distribution can be 
generated independently.  

 

Considering two sources normally distributed: 

SourceA has mean=mSA and sd=sdSA and  

SourceB has mean=mSB and sd=sdSB.  

 

You can generate n random numbers of SourceA 
(SimNumSA) and SourceB (SimNumSB) 
independently as follows: 

 

   SimNumSA<-rnorm(n, mSA, sdSA) 

   SimNumSB<-rnorm(n, mSB, sdSB)    

 

3.2.2 How to assign shared random values 

There are cases where the same input variable is used multiple times in a calculation, and in 

these cases, that input variable should have only one random value for each iteration.  For 

example, if a common root:shoot ratio is used across multiple forest types, a random sample of 

a possible R:S is selected at each iteration, and each forest type that requires a R:S value uses 

that same value at that iteration. 

 

Spreadsheet Formula R code 
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For shared sources, the random sample of an 

uncertainty input is shared: 

 

SourceA: 

   A3=NORM.INV(RANDARRAY(1, 

n),$A$1,$A$2)  

SourceB:  

   B3=$A$3 

 

In this example, iterations are in rows, and 

every column within a row that uses this source 

would reference cell A3 for a random value of 

this source. 

 

For sources (SourceA and SourceB) that are 
shared, the random sample for the input will be 
shared by both sources for each iteration of the 
Monte Carlo simulation.  

 

Considering a shared source normally distributed: 
SourceA has mean=mA and sd=sdA 

 

You can generate n random numbers of SourceA 
as follows: 

 

  SimNumA<- rnorm(n, mA, sdA) 

 

Each source that is shared with SourceA will 
reference the random number drawn for that 
iteration 

 

   SimNumB <- SimNumA 

 

3.2.3 How to assign partially correlated random values 

Input variables to a calculation may be neither shared nor independent, but rather partially 

correlated, if these variables are calculated from a combination of shared and independent 

sources.  It is easier to conduct a Monte Carlo simulation beginning with the inputs that are fully 

independent and fully shared, and this is what we recommend.  However, if beginning a 

calculation with partially correlated variables as inputs, such as emission factors based on 

independent forest inventory but shared root:shoot ratios, then the Monte Carlo will require 

partially correlated random samples for these variables.   

Creating a matrix with more than two variables in Excel is possible but challenging (Zaiontz 

2020). 
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Spreadsheet Formula R code 

1. For covariance between two vectors X (A1:A30) 

and Y (B1:B30), a 2 x 2 variance-covariance matrix 

will be needed.  

 

Matrix A 

 X Y 

X =VAR.S(A1:A30) =COVARIANCE.S(A1:

A30,B1:B30)  

Y =COVARIANCE.S(B1:

B30,A1:A30)  

=VAR.S(B1:B30) 

 

2. Calculate the mean for both variables with: 

 

Matrix B 

X =AVERAGE(A1:A
30) 

Y =AVERAGE(B1:B

30) 

 

3. Calculate a Cholesky decomposition of the 

covariance matrix (Pistilli 2019). This will also be a 2 

x 2 matrix.  

 

Matrix C 

 X Y 

X =SQRT(A11)  

 

=0 

Y =COVARIANCE.S(A21/C

11) 
=SQRT(A22 - C21

2) 

 

Load the MASS package, which can develop 

multivariate normal random numbers: 

 

   library(MASS) 

 

First generate a 2 x 2 variance-covariance 

matrix between vectors X and Y 

 

   A<-cov(cbind(X,Y)) 

 

Generate n pairs of random values of X and Y 

with the variance-covariance specified in A: 

 

  mvrnorm(n,c(mean(X),mean(Y)), A) 
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4. Calculate a random bivariate normal vector. For n 

random number iterations, this would be a 2 x n 

matrix with the same formula in each cell. Highlight 

cells to form a 2 x n matrix, type the formula:  

 

=MMULT(C NORM.INV(RANDARRAY(2,n))+B 

After typing the formula, pressing ctrl + shift + enter 

on the keyboard will fill all of the cells in the matrix 

with the function.  

Each cell in the random bivariate normal vector is the 

mean of that variable plus a random residual with the 

desired correlation.  

 

3.3 How to iterate 

Random sampling, whether from a PDF or from data, can be repeated many times to generate 

a distribution of estimates from which the uncertainty can be assessed.  

 

Spreadsheet Formula R code 

Each calculation is repeated in rows (or columns). 

 

Excel 365 has a RANDARRAY function which 

facilitates this process.  

The RANDARRAY formula is used in combination 

with the formula used to sample from the data. 

RANDARRAY(R,C) 

where R is the specified number of rows and C is 

the specified number of columns. For example, if 

you are doing iterations in rows, R refers to the 

number of iterations, and C is 1. 

 

For example, if sampling from a normal distribution 

with mean in cell A1, sd in cell A2, and the number 

of iterations in cell A3, 

= NORM.INV(RANDARRAY($A$3,1), 

$A$1, $A$2) 

 

The advantage of RANDARRAY is that the formula 

is represented only once, instead of separately in 

each iteration.  Having thousands of formulas 

makes the file enormous and the execution slow.  

You should probably invest in Office 365 if you 

want to do Monte Carlo in Excel.  

In the case of a normal distribution with a specified 

mean (mean) and standard deviation (sd), a 

random number can be generated as follows: 

 

   rnorm(1,mean,sd) 

 

R uses matrices and arrays to store data. 

Repeated calculations are handled by the number 

of elements in the array (n).  To generate n random 

numbers, indicate n: 

 

   rnorm(n,mean,sd) 
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The # sign can be used in place of 

=NORM.INV(RANDARRAY) in simple formulas that 

do not sample from a distribution. The # copies the 

formula to fill the array. This is useful for 

calculations that do not require random sampling.  

This is effectively the same as the advantage of 

RANDARRAY, the formula needs to be typed only 

in the first cell, and it will autofill for every iteration.  

 

Potential Pitfalls 

If converted to a Google Sheet, all of the formulas using the # will have an error message called 

ANCHOR ARRAY. 

Using too few Monte Carlo iterations can provide imprecise uncertainty estimates. For your 

emission reduction calculation, you can determine the number of Monte Carlo iterations needed 

to achieve a desired confidence in your uncertainty estimates. In this example (based on the 

Simple Example in Annex 1), uncertainty estimates are accurate to only about 20% of the 

emission reduction even after 2000 iterations but approach 10% at 10,000 iterations (Figure 

3.3). 

 

Figure 3.3. The similarity of Monte Carlo estimates depends on the number of iterations.  
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a) Median of Monte Carlo estimates of the emission reductions, calculated for numbers of 
iterations up to 10,000 for 5 independent Monte Carlo runs.  

b) (b) The half width of the 90% CI of the Monte Carlo iterations divided by the median ER 
for the same 5 Monte Carlo  runs. 

c) The standard deviation of the 5 Monte Carlo estimates of emission reductions.  

d) The standard deviation of the 5 Monte Carlo estimates of uncertainty.  

 

3.4 How to interpret the output of the Monte Carlo  

The Monte Carlo output can be analyzed to characterize the uncertainty in the results of the 

calculation. 

1. Find the median (50th percentile) of the Monte Carlo outputs 

2. Find the 5th percentile of the outputs  

3. Find the 95th percentile of the outputs 

4. Calculate the half-width of the 90% confidence interval. 

5. Convert this to a percentage of the median. 

Spreadsheet Formula R Code 

Where Monte Carlo output is in cells B1:B10000 

 

A1 =MEDIAN(B1:B10000) 

A2 =PERCENTILE(B1:B10000, 0.05) 

A3 =PERCENTILE(B1:B10000, 0.95) 

A4 =(A3-A2)/2 

A5 =A4/A1*100 

Considering a vector of simulated numbers 
SimNumC (c1,c2,c3,...,cn): 

 

A1<- median(SimNumC) 

A2<- quantile(SimNumC , 0.05) 

A3<- quantile(SimNumC , 0.95) 

A4<- (A3-A2)/2 

A5<- abs(A4/A1)*100 

 
Potential Pitfalls 

A common mistake in interpreting Monte Carlo output is to report the uncertainty in the mean or 

median of the distribution of the estimates.  This mistake is a big one, typically underreporting 

uncertainty by a factor of 100, because calculating uncertainty in the central tendency (e.g., the 

standard error of the mean) involves dividing the standard deviation by the square root of the 

number of “observations,” which is commonly 10,000 trials.  The confidence in the mean could 

be made arbitrarily small by increasing the number of Monte Carlo iterations, but the 90% 

confidence interval of the increased number of estimates would remain just as wide.  Increasing 

the number of iterations improves the precision of the uncertainty estimate, but, interpreted 

correctly, it does not make the uncertainty smaller. 
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Step 4.  Evaluate the contribution of each source to the overall 
uncertainty 

Understanding how much uncertainty is contributed by each source will help to identify 

opportunities for reducing uncertainties.  Evaluating the overall uncertainty with different inputs 

assumed to be perfectly known is one way of assessing the sensitivity of the overall uncertainty 

to uncertainty in each input.   

Conducting a sensitivity analysis is facilitated by switches for each input that turn the associated 

uncertainty on or off.  The overall uncertainty can be calculated with different combinations of 

switches turned on, rather than changing the formulae in the Excel file or the code in R. 

 

Spreadsheet Formula R Code 

This is accomplished with an “IF” statement 

referencing a cell used to switch a source “on” or 

“off” for the sensitivity analysis. 

 

For example, if cell A5 on the results page has the 

value “on” or “off”, and cell B5 on the inputs page 

has 

   IF(‘resultspage’A5=”on”, 1, 0.0000000001) 

 

Each iteration of a random draw for the source is 

multiplied by cell B5. If the uncertainty source is 

“off”, 0.0000000001 is used instead of 0 to avoid 

errors in the NORM.INV function.  

The code relevant to an uncertainty source can be 

activated using an “if” statement.  

 

Comparing the importance of uncertainty in the various inputs can be accomplished by 

evaluating each one alone, with all other uncertainties turned off, or by removing each one, with 

all other sources turned on. From the point of view of evaluating the benefit of reducing a 

particular source in the context of all the others, it is more relevant to report how much 

uncertainty is reduced by eliminating that source than to report how much that source 

contributes alone, and this is the approach recommended in the FCPF Guidelines on the 

Application of the Methodological Framework. However, it is easier to understand the results of 

considering one source at a time.  And if there is a need to revise one source,  

 

The following table shows the results of a sensitivity analysis of the Simple Example provided in 

the Annex. 

Sources included Uncertainty 

(Megatons C/year) 

Uncertainty 

(% of Emissions) 

 Reference 
Level 

Crediting 

Period 

ER Reference 
Level 

Crediting 

Period 

ER 
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R:S 2.80 2.50 0.29 17 17 17 

CF 0.58 0.52 0.07 4 4 4 

Sampling uncertainty 
in EF 

3.29 2.95 0.36 21 21 21 

Emission factors 

(from the above 3 
sources) 

4.44 3.98 0.46 27 27 27 

Activity data  4.10 7.20 8.07 25 49 472 

All sources  6.09 8.54 8.46 37 58 492 

 

In this example, uncertainties are high relative to the emission reduction. This is because in this 

example the reduction in emissions was small (1.7 megatons C/year, see Fig. 4.1 for a 

graphical explanation).  

 

 

Figure 4.1. (a) Uncertainties are 37% of reference level emissions and 57% of the monitoring 
period emissions.  (b) Because the emission reduction is small, the combined uncertainty is a 
large fraction of the emission reduction (>400%).  
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As shown in figure 4.2, uncertainties relative to the emission reduction will become smaller over 

time if the emission reduction increases over time, assuming that the contributing uncertainties 

are relatively constant over time (Neeff 2021). 

 

 

Figure 4.2. Uncertainty in estimating emission reductions by scenarios of effectiveness in 
reducing emissions below the reference level and by uncertainty in measuring emissions (from 
Neff (2021), modified from FAO 2019) 

Potential Pitfalls 

If uncertainty estimates are not very accurate (based on a small number of Monte Carlo 

iterations), then by random variation, the uncertainty with a source turned off can be slightly 

higher than with the source turned on. Reporting each source turned on, rather than each 

source turned off, will avoid this problem.  Increasing the number of Monte Carlo iterations 

makes the uncertainty estimates more precise (Figure 3.3).   
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Annex 1.  Monte Carlo Example in Excel 

The simple example in Excel has two versions, one with a 2-year crediting period, and one with 

a 4-year crediting period, which illustrates the high uncertainty associated with a short crediting 

period.  

 

Two forest types are included in the simple example, and deforestation is the only land-use 

transition. The example illustrates a deforestation rate of 3% per year in both forest types.   

 

Introduction 

The first sheet of the Excel workbook describes the roles of the subsequent sheets. 

 

 Input Variables 

The Input Variables sheet has all the data needed for the calculation of emission reductions. 

Table 1 is activity data, or the .  area of land converted  from forest type 1 to non forest (FT1-

NF) and the area of land converted from forest type 2 to non forest ( FT2-NF) for the total 10 

year time period: seven years of reference period and three years of monitoring period. Table 2 

has emission factors including carbon fraction (CF), root to shoot ratio (R:S), and above ground 

biomass (AGB).    

Uncertainties are given as the half width of the 90% CI.  The SE is calculated from the 

uncertainty and the value of the estimate, although we recognize that in reality, the uncertainty 

is calculated from the SE. 
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Activity Data (AD) 

In the Activity Data sheet, forest transition data for each time period are simulated using Monte 

Carlo Simulation as: =NORM.INV(RAND(), B$5, B$7*B$1) 

NORM.INV(probability, mean, sd) gives an inverse of the normal cumulative 
distribution, at the specified probability, mean, and standard deviation (sd).  

 RAND() generates uniform random normal values between 0-1. 

 B$5 is the mean of the value. 

 B$7 is the standard error. 

 B$1 is a multiplier controlled by a switch in the ER and Sensitivity Analysis sheet. 
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Emission Factors (EF)  

In the Emission Factor Sheet, R:S, CF and AGB for each forest type are simulated using Monte 

Carlo simulation.  

Belowground biomass (BGB) is calculated by multiplying each simulated AGB value with the 

simulated R:S value.  

Total carbon for each land cover type is calculated as the sum of AGB and BGB. 

Emission Factors (EF) are calculated as the difference in total carbon between land cover 

types. Column M depicts the transition from forest type 1 (FT1) to non forest (NF). The process 

is repeated for FT2-NF in column N.  

The cells below row 10 are simulated values for each input variable. Multipliers in row 8 are 

controlled by switches on the ER and Sensitivity Analysis sheet.  



 

           22 

 

 

ER and Simulation  

Emissions for each forest transition are calculated by multiplying Activity Data (AD) from the AD 

sheet by Emission Factors (EF) in the EF sheet.

 

1. In row 10006, the median of all simulations for each forest type is calculated as 

=MEDIAN(B4:B10003) 

2. In row 10007, the 5% percentile of all simulations for each forest type is calculated as 
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=PERCENTILE(B4:B10003, 0.05) 

3. In row 10008, the 95% percentile of all simulations for each forest type is calculated as 

=PERCENTILE(B4:B10003, 0.95) 

4. In row 10009, the half width of the 90% confidence interval is calculated as: (95 

percentile-5 percentile)/2 

i.e. (B10008-B10007)/2 

5. Finally in row 10010, uncertainty is calculated as: (half of 90% confidence 

interval/median)*100 

i.e. (B10009/B10006)*100 

 

Switches 

In the image below, the final uncertainty of Emission Reductions (cell X10009) is highlighted in 

blue. When the switches in cells D10012:D10017 are ‘on’ the related multipliers are set to 1. 

When the switches are ‘off’, the multipliers are set to 0 (or 1E-10, which is close to 0, and avoids 

errors in the excel formula). The uncertainties change slightly every time the workbook updates 

and the random values are resampled. 
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This image depicts what happens when R:S uncertainty is turned off in the EF tab. 

 

 

The contribution of each source to the overall uncertainty can be determined by starting with all 

sources on and turning off each source one by one, or by starting with all sources off and 

turning them on one by one. The sensitivity analysis table is populated with the values copied 

from cell J1009 with different combinations of switches on or off. 
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Annex 2.  Monte Carlo Example in R 

 

https://github.com/mark78b/MCS_in_R/ 

 

The Simple Example in R is the same as that in Excel, showing deforestation rates of two forest 

types. 

 

 

1. Library loading 

To run the current R code, load the following libraries: 

 

library(matrixStats) 

library(gridExtra) 

library(reshape) 

 

2. Reading of inputs by Forest Type and Period 

Read the specific values of AD and EF (and associated uncertainties) by Forest Type (FT) and 
Period (P). Read csv Tables of AD and EF as follows: 

 

rm(list=ls(all=TRUE)) 

 

### Address to read inputs 

setwd("C:/Desktop/Inputs”) 

 

### Reading of inputs 

# AD inputs 

BaseAD <- read.csv("1_Activity_Data.csv") 

dim(BaseAD) 

 

BaseAD_4yr <- read.csv("1_Activity_Data_4yr.csv") 

dim(BaseAD_4yr) 

 

# EF inputs 

BaseEF <- read.csv("2_Emission_Factors.csv") 

dim(BaseEF) 

 

 

3. Simulations of random numbers of AD and EF 

A key step of MCS is the generation of random numbers of AD and EF. To generate random 
numbers it is necessary: (i) the estimator of AD and EF and, (ii) the standard error (SE) of AD 

https://github.com/mark78b/MCS_in_R/
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and EF estimators. Nevertheless, in most cases, only uncertainties of AD and EF are reported. 
So it is necessary to compute SE of AD and EF as following: 

 

𝑈 =
1/2 𝐼𝐶

𝜃
𝑥 100        ⇒                  𝑈 =

1.96 𝑥 𝜎 

𝜃
𝑥 100        ⇒          𝜎 =

𝑈 𝑥  𝜃 

1.96 𝑥 100
  

 

             U = uncertainty 

             IC= confidence Interval 

             𝜃= estimator of AD or EF          

 𝜎= standard deviation  

 

Once SE of AD and EF have been computed, it is possible (i) to generate vectors of random 
numbers of AD and EF per FT-P, (ii) to estimate emissions per FT, and (iii) to save vectors of 
simulated emissions by FT in matrix format.  

 

Following is show how to simulate random numbers (of normal distribution, using mean and 
standard error) of independient AD and partially correlated EF: 

 

####################  1. Simulation of Activity Data     ################### 

 

#### Computing of SD of AD 

BaseAD$DesEstDA<-abs((BaseAD$U_AD_per*BaseAD$AD_ha)/(1.65*100)) 

 

### Number of simulations 

n<-1000000 

MatrizDef<-seq(1:n) 

 

### Switch for AD if it is 1 incorporates MC and if it is 0 then use simple value 

SWITCH_AD =1 

 

### Simulations of AD per period and conversions 

for (i in 1:length(BaseAD$Code)) 

{ 

  DAsim<-rnorm(n,mean=BaseAD$AD_ha[i], sd=BaseAD$DesEstDA[i]*SWITCH_AD) 

  MatrizDef<-cbind(MatrizDef,DAsim) 

} 

 

### Conversion of AD Matrix to DataFrame  
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Matrix_AD<-as.data.frame(MatrizDef) 

 

### Correct colnames of AD-Dataframe per "Period" and "Transition" 

colnames(Matrix_AD) = c("Id_sim_AD", 

                        "AD_P1_FT1_NF","AD_P1_FT2_NF", 

                        "AD_P2_FT1_NF","AD_P2_FT2_NF", 

                        "AD_P3_FT1_NF","AD_P3_FT2_NF") 

 

##################  2. Simulation of Emissions Factors  #################### 

 

### Simulations and CF, R:S and AGB  per Forest Type and Transition 

### Matrix for saving simulated CF, R:S and AGB  

MatrizEF_Def <-seq(1:n) 

### Switches for EF 

SWITCH_EF =1 

 

### Simulations of CF, R:S and AGB 

for (i in 1:length(BaseEF$Value)) 

{ 

  EF_Sim<-rnorm(n,mean=BaseEF$Value[i], sd=BaseEF$SE[i]*SWITCH_EF) 

  MatrizEF_Def<-cbind(MatrizEF_Def,EF_Sim) 

} 

 

### Converting the "CF, R:S and AGB" Matrix to DataFrame 

Matrix_EF<-as.data.frame(MatrizEF_Def) 

 

### Correct colnames of "CF, R:S and AGB" Dataframe 

colnames(Matrix_EF) = c("Id_sim_EF","CF","Root_S","AGB_FT1","AGB_FT2","AGB_NF") 

 

################################################################## 

### Simulation of BGB, Carbon Densities and EF per Transition 

 

### Simulation of BGB per stratum 

Matrix_EF$BGB_FT1 <-   Matrix_EF$AGB_FT1  * Matrix_EF$Root_S 

Matrix_EF$BGB_FT2 <-   Matrix_EF$AGB_FT2  * Matrix_EF$Root_S 

Matrix_EF$BGB_NF  <-   Matrix_EF$AGB_NF   * Matrix_EF$Root_S 

 

### Simulation of Carbon Densities per stratum 

Matrix_EF$C_FT1  <- (Matrix_EF$AGB_FT1 + Matrix_EF$BGB_FT1 ) * Matrix_EF$CF  
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Matrix_EF$C_FT2  <- (Matrix_EF$AGB_FT2 + Matrix_EF$BGB_FT2 ) * Matrix_EF$CF 

Matrix_EF$C_NF   <- (Matrix_EF$AGB_NF  + Matrix_EF$BGB_NF  ) * Matrix_EF$CF 

 

### Simulation of EF per Transition 

Matrix_EF$EF_FT1_NF <- Matrix_EF$C_FT1 - Matrix_EF$C_NF 

Matrix_EF$EF_FT2_NF <- Matrix_EF$C_FT2 - Matrix_EF$C_NF 

 

### Filtering of simulated EF per Transition 

Matrix_EF1<-data.frame(Id_sim_EF =Matrix_EF$Id_sim_EF, 

                       EF_FT1_NF =Matrix_EF$EF_FT1_NF,  

                       EF_FT2_NF =Matrix_EF$EF_FT2_NF) 

length(Matrix_EF1$Id_sim_EF) 

 

4. Estimation of simulated emissions 

Using the AD and EF simulated, emissions per Land Use transition and period are estimated: 

 

### Merge of "AD-Dataframe" and "EF-Dataframe" 

Table_Emi<- merge(Matrix_AD, Matrix_EF1, by.x = "Id_sim_AD", by.y = "Id_sim_EF",all=T) 

 

### Estimation of Emission per Period and Transition annualized 

yearP1=7 

yearP2=3 

yearP3=2 

 

Table_Emi$Emi_P1_FT1_NF   <- Table_Emi$AD_P1_FT1_NF * Table_Emi$EF_FT1_NF 

Table_Emi$Emi_P1_FT2_NF   <- Table_Emi$AD_P1_FT2_NF * Table_Emi$EF_FT2_NF 

Table_Emi$Emi_P2_FT1_NF   <- Table_Emi$AD_P2_FT1_NF * Table_Emi$EF_FT1_NF 

Table_Emi$Emi_P2_FT2_NF   <- Table_Emi$AD_P2_FT2_NF * Table_Emi$EF_FT2_NF 

Table_Emi$Emi_P3_FT1_NF   <- Table_Emi$AD_P3_FT1_NF * Table_Emi$EF_FT1_NF 

Table_Emi$Emi_P3_FT2_NF   <- Table_Emi$AD_P3_FT2_NF * Table_Emi$EF_FT2_NF 

dim(Table_Emi) 

 

##################################################################### 

########## 3.1 Simulation of Emissions of Base Line  (2 Periods,7 and 3 years)  #### 

 

### Selecting of emissions for Base Line period 

Table_Emi_FREL<- Table_Emi[, c(1,10:13)] 

Table_Emi_FREL$FREL<- ( rowSums(Table_Emi_FREL[,c(2:5)]) ) / (yearP1+yearP2) 
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5. Estimation of quantiles and uncertainties 

Using vectors of simulated emissions it is possible to estimate associated lower/upper 
uncertainties as follows: 

 

 

      U_inf= Uncertainty on the left side of the simulated emissions 

      U_sup= Uncertainty on the right side of the simulated emissions 

      Q (0.025)= quantile 0.025 of simulated emissions 

      Q (0.975)= quantile 0.975 of simulated emissions 

      𝐸= Monte Carlo  simulated emissions 

 

 

 

(i) so, lower/upper quantiles of Base Line emissions can be estimated as: 

Q_05_FREL <-quantile(Table_Emi_FREL$FREL,0.05)[[1]] 

Q_95_FREL <-quantile(Table_Emi_FREL$FREL,0.95)[[1]] 

 

(ii) also, lower/upper uncertainties of emissions Base Line  can be estimated as: 

half_CI <- (Q_95_FREL - Q_05_FREL)/2 

U_FREL<-abs( half_CI / median(Table_Emi_FREL$FREL))*100 

 

6. Saving of quantiles and uncertainties 

Quantiles and uncertainties of emissions by period and median emission are saved: 

 

### Saving of Base Line emissions and associated quantiles and Uncertainties 

Table_FREL<-data.frame(Period = "FREL", 

                                          Emission = median(Table_Emi_FREL$FREL), 

                                          Q_05 = round(Q_05_FREL , digits = 3), 

                                          Q_95 = round(Q_95_FREL , digits = 3), 

                                          Uncertainty = round(U_FREL, digits = 2)) 

 

7. Probability density function of emissions by period and Base Line 
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Finally, probability density functions (PDF) of emissions by period and for median emissions are 
plotted: 

 

### Saving of PDF of Base Line emissions 

setwd("C:/Users/Invited/Outputs") 

 

pdf("1_Emissions_Uncertainty_FREL.pdf") 

par(mfrow=c(2,1)) 

hist(Table_Emi_FREL$FREL,  

     main="Histogram of FREL",  

     xlab="Average annual emissions from deforestation (Ton of CO2e)", 

     cex.lab=1, cex.axis=0.8, cex.main=1,  

      #border="blue",  

     col="green", 

     las=1,  

     breaks = 200, 

     prob = TRUE) 

lines(density(Table_Emi_FREL$FREL )) 

dev.off() 

 

 

A draft version of the R code shown above is available at the following link: 

https://github.com/mark78b/MCS_in_R/ 

 

  

https://github.com/mark78b/MCS_in_R/
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