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Guidance Note on estimating the uncertainty of emission reductions using
Monte Carlo simulation

This guidance note has been prepared by the QUERCA (Quantifying Uncertainty Estimates
and Risk for Carbon Accounting) project at SUNY College of Environmental Science and
Forestry using funding from the FCPF

Criterion 9 of the FCPF Methodological Framewaork requires that the uncertainty of the estimate
of Emission Reductions be quantified using Monte Carlo methods. The FCPF Guidelines on
Uncertainty Analysis of Emission Reductions describe which sources of uncertainty to
propagate and provide guidance for conducting Monte Carlo simulations.

ER Programs differ in both the activities they consider and the methods by which they calculate
emission factors and activity data. The sources of uncertainty thus differ, and the calculations
for correctly combining them will also differ. This document describes the general approach and
provides a simple example to illustrate the approach. The general approach described here
includes the following steps:

e Step 1. Identify sources of values used in the emission reduction estimates and whether
they are independent or shared
Step 2. Identify the uncertainty associated with each of these variables
Step 3. Propagate the uncertainties in the estimate of emission reductions using Monte
Carlo simulation

e Step 4. Evaluate the contribution of each source to the overall uncertainty

The simple example has been provided in Excel and in R to help users to understand this
guidance and each of the steps. Each situation is unique, and the examples given will need to
be adapted to the programs in question, but the underlying principles are universal. More details
on the example are provided in Annex 1.

This guidance note complements the FCPF Guidelines on Uncertainty Analysis.

Step 1. Identify sources of values used in the emission reduction
estimates and whether they are independent or shared.

Following the process by which ER Programs estimated emission reductions, programs should
identify all the variables used in the estimation of emissions and removals. Table 1 in the FCPF
Guidelines on Uncertainty Analysis provides a list of the main sources of uncertainty that, at
minimum, shall be evaluated. In the Monte Carlo simulation, the uncertainties in these variables
will be combined by sampling from the likely distributions of their values as determined in Step 2
below.

To combine the uncertainties of multiple variables correctly, requires understanding which
variables are used independently and which are shared across multiple calculations.

Variables and their associated uncertainty sources contribute independently to a particular
calculation if they are independently derived and are not used for any other variable. For
example, tree inventory data are generally collected independently for each stratum or land
cover type and are not used in the calculations for other strata or land cover types (shown in
blue in Figure 1.1).

Other variables and their associated uncertainties are shared across multiple calculations, for
example, carbon fraction (CF), root:shoot ratio (R:S), and tree allometry variables might be used
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across multiple forest types (shown in red in Figure 1.1). In that case, carbon densities are
calculated by a combination of independent and shared sources and are thus partially
correlated (shown in purple in Figure 1.1) and it is important to represent these correlations
properly when combining them in error propagation.

Cover type 1 CF R:S Allometry

Inventory Data Q O Q Q O O Q Shared Parameters

Legend: Uncertainty Types
O Independent (zero correlation)
© Shared (fully correlated)

Carbon Densities 'O' Q O Q © Partially Correlated
Cover type 1 2 3 4

Figure 1.1 In calculating carbon densities, inventory data collected in four types of land cover
are independent (blue). If the same values of carbon fraction (CF), root:shoot ratio (R:S), and
tree allometry are used across multiple forest types, these are shared (red). Uncertainties
calculated from a combination of independent and shared sources will be partially correlated
(purple), with correlation coefficients intermediate between O (fully independent) and 1 (fully
shared).

Whether an uncertainty source should be treated as shared or independent depends on how it
was collected and how it is used in the calculation. Some programs collect tree allometry data
independently for each land cover type. In that case, uncertainties in tree allometry would be
independent for each cover type (Figure 1.2). Theoretically, carbon fraction and root:shoot
ratios could be determined independently for each cover type, or a single value could be used
across forest types. The conversion of carbon to CO2 is treated as a constant without
uncertainty, because variability in carbon and oxygen isotope ratios is negligible.
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Figure 1 2. Whether a variable is independent or shared depends on how the data were
collected. If allometric equations are specific to each cover type, they are independent. Carbon
fraction and root:shoot ratio could be determined separately for each forest type, but if they are
not, they are shared.

Since the emission reductions are estimated as the difference between the reference level of
emissions and the actual monitored emissions, correlation is also relevant between the two
estimates. For example, if programs use the same emission factors in the reference and



monitoring periods, they should be treated as shared (as shown in Figure 1.3). In contrast, if
inventory data are collected independently for each time period, the emission factors for the two

periods are more independent.
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Figure 1 3. Emission factors are derived from carbon densities of the categories of land cover in
transition. Many such transitions are possible and the number and degree of correlation of such
activities will differ by program depending on the design. Emission factors may be shared
between the reference level and monitoring period, as shown here. In estimating the uncertainty
in the emission reductions, shared sources of uncertainty will share a randomly sampled value
at each iteration of the Monte Carlo simulation. Uncertainties associated with results based on
both shared and independent sources will be partially correlated (shown in purple).

The degree of partial correlation (i.e., the value of the correlation coefficient) that arises from
combining a mix of shared and independent uncertainty sources can be estimated analytically
(not covered in this guidance) or by examining the results of Monte Carlo simulation. It is not
important to know the correlation coefficient of intermediate variables in the calculation.
However, if the calculation were to begin with partially correlated inputs, such as carbon
densities, the correlation coefficients would need to be estimated to be propagated correctly
(see Section 3.2.3).



Potential Pitfalls

Treating uncertainty sources as independent when they are shared will underestimate the true
combined uncertainty. In the Simple Example provided in Annex 1, the uncertainty in the ER
should be 416%. If the emission factors are treated as independent between the reference
level and the monitoring period, instead of shared, then a value of 403% is obtained, which is
incorrect.

Step 2. Identify the uncertainty associated with each of these variables.

Using the Monte Carlo approach to error propagation requires defining the distributions of the
variables used in the calculation. There are two ways to generate random samples that mimic
the likely distribution of a variable. The first is to sample from a defined distribution (a probability
density function or PDF). The second is to randomly sample values of the variable from a data
set (bootstrapping).

2.1 Decide between PDF and bootstrap

It is easier to sample from a defined distribution than to sample from a data set, especially in
Excel. Sampling from a data set has the advantage that no assumptions are required about the
nature of the distribution. If the distribution is not normal, then bootstrapping would be more
accurate, unless the data are not representative. The figure below provides a simple decision
tree to decide between PDF and bootstrap to generate random samples that mimic the likely
distribution of a variable.

Are Are data
representative available from Solicit expert opinion
data available? other sources?

Inspect the data

Is the
distribution Compute Mean and SE
normal?

Use Normal
Use Bootstrap PDF

Figure 2.1. Decision tree for choosing whether to sample from data or from a PDF.



2.2 Describing uncertainty with a probability density function (PDF)

A mathematical function can be used to describe the distribution of possible values of a
variable. Commonly, in the absence of information to the contrary, normal distributions are
used. A distribution other than normal could be selected if the possible values are not normally
distributed. For some applications, beta, binomial, gamma, weibull, or lognormal distributions
best describe the distribution of observations. However, if there are enough data to determine
that the distribution is not normal, then bootstrapping is also an option.

In REDD+ carbon accounting, uniform distributions have sometimes been used to describe
possible values of the carbon fraction (IPCC 2006 Table 4.3) and root:shoot ratio (IPCC 2019
refinement of 2006 Table 4.4). For this reason, we provide guidance on how to use a uniform
PDF. However, it seems implausible that there is a zero probability of a value outside these
ranges. Instead, we recommend that the mean and standard error of the available data be
used to define a normal distribution. Alternatively, the values could be sampled by
bootstrapping.

In the absence of reliable data, expert judgement may be used to define a PDF. The FCPF
Guidelines on Uncertainty Analysis of Emission Reductions recommends independently
consulting at least three experts when the parameter estimate is not available or is not
representative (e.g. based on research plots). The mean and standard error of the mean of
expert opinions should be used to define a normal distribution. Using the range would be
sensitive to extreme values, and doubling the range (as currently recommended in the
Guidelines) would inflate the uncertainty of the emission reductions. Alternatively, the values
could be sampled by bootstrapping.

2.3 Using the distribution of the data (bootstrapping)

An alternative to representing the distribution of the inputs analytically is to resample the data, a
procedure known as bootstrapping (Ephron and Tibshirani 1994) that is illustrated in figure 2.2.
Values are randomly drawn from the data to create alternative possible data sets with similar
distributions and the same number of observations. Each random sample is drawn from all
possible samples (this is called “sampling with replacement”) because sampling without
replacement, if drawing the number of observations in the data set, would return the original
data set every time. This approach requires no assumption of a distribution and is thus most
true to the measured population. Bootstrapping is especially advantageous when the
distribution is difficult to define. The drawback to this approach is that the representation of the
population is only as good as the data, and if the data set is small, it may not accurately capture
the range of potential values.


https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_04_Ch4_Forest_Land.pdf
https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/4_Volume4/19R_V4_Ch04_Forest%20Land.pdf
https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/4_Volume4/19R_V4_Ch04_Forest%20Land.pdf
https://docs.google.com/document/d/1tqW8YAj3xaH2xjPWbWirNLIhLe6P_i2_837ymfmLtdU/edit
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Figure 2.2. Random sampling of values from a data set. The data set has 7 values, which can be
randomly sampled (with replacement) to create alternative possible data sets.

Potential Pitfalls

Bootstrap sampling must be configured to match the sampling design. For example, if the
sampling design is stratified, it would be necessary to bootstrap for each stratum separately and
produce the overall estimates by combining the stratum information. There could be similar
issues for cluster sampling.

Often data are not representative, due to access to sampling locations (close to roads or forest
edges), or ease of measurement (excavating roots of small trees). This is a potential pitfall both
for characterizing the data with a PDF and for bootstrapping. In these cases, expert judgement
should be used to correct for bias in the data.

Step 3. Propagate the uncertainties in the estimate of emission
reductions using Monte Carlo simulation

The FCPF requires the use of Monte Carlo simulation to quantify the effects of uncertain inputs
on the uncertainty of carbon emission reductions. Using this approach, the calculation of the
emission reductions is iterated hundreds or thousands of times, with the inputs varying
randomly to mimic the uncertainties in the values of all the variables that went into the
calculation of both the Reference Level and the monitored emissions and removals. As
described above in Step 2, random samples that mimic the likely distribution of a variable can
be generated using a defined distribution (a PDF) or by randomly sampling values of the
variable from a data set (bootstrapping). The distribution of the resulting hundreds or thousands
of outputs reflects the net effects of the uncertainties in the inputs.

3.1 How to randomly sample from a distribution or a dataset



3.1.1 Sampling from a distribution

For simulating the uncertainty in an input using a defined distribution, the parameters describing
the distribution are used to generate the random samples.

Distribution Spreadsheet formulas R code

Uniform RAND() generates random numbers uniformly Generate n uniform random
distributed between 0 and 1. numbers between al and a2
Generate uniform random numbers between values in | ©>"9"
Al and A2 using:

runif(n, min = al, max = a2)
= ($AS1 + RAND()*($A$2-$A%1))
Normal NORM.INV(probability, mean, sd) gives an inverse of | Given the mean and

standard deviation.
and B2, use:

the normal cumulative distribution, at a specified
probability, mean, and standard deviation (sd).

Combining RAND and NORM.INV gives a random
sample from a distribution with a specified mean and
If the mean and sd are in cells B1

=NORM.INV(RAND(), $B$1, $B$2)

standard deviation (sd) of the
distribution, generate n
random samples using:

rnorm(n, mean, sd)

3.1.2 Sampling from a dataset (bootstrapping)

For simulating the uncertainty in an input using bootstrapping, each random sample is selected

from the data set of possible inputs.

Spreadsheet Formula

R code

If 10 data points are in cells A1:A10, you can
randomly sample 1 of them using:

=INDEX($A$1:$A$10,ROWS($ASL:$AS10)*R
AND()+1,COLUMNS($A$1:$A$10)*RAND()+1)

Since this formula draws a single value at random
from the specified data set, you need to copy it
many times to generate a bootstrap sample. Copy
this formula to sample many observations and be
copied for as many iterations as needed.

Given a sample of size n: (c1,c2,c3,...,cn), you can
generate a vector:

SampleC<-c(c1,c2,c3,...,cn)

Defining a number of simulations (NS), you can
generate bootstrap samples (BootstrapSam) by
generating NS samples of size n sampled of vector
“SampleC” with replacement:




BootstrapSam <- replicate(NS,

sample(SampleC, replace = T))

3.2 How to sample multiple sources of uncertainty

To account correctly for independent vs. shared sources of uncertainty (identified in Step 1,

above) requires assigning the random samples of the input values independently, in the case of
independent samples (3.2.1), or assigning the same random value in all calculations that share
that value, in the case of shared sources (3.2.3), at each iteration of the Monte Carlo simulation.

3.2.1 How to assign independent random values

In the case of independent input variables, random values will be selected independently for
each variable to represent uncertainty in those variables. For example, activity data are
collected independently at each point in time.

Spreadsheet Formula R code

For independent sources, the cells referenced For independent sources (SourceA and SourceB),
for parameters (e.g. mean and sd in the case of random numbers of a specific distribution can be
a normally distributed source) are not the same: | 9enerated independently.

SourceA: Considering two sources normally distributed:

A3=NORM.INV(RANDARRAY (L,n), $A$1,$Ag2) | SOUrCeA has mean=mSA and sd=sdSA and

SourceB has mean=mSB and sd=sdSB.
SourceB:

B3=NORM.INV(RANDARRAY(1,
n),$B$1,$B$2) You can generate n random numbers of SourceA

(SimNumSA) and SourceB (SIMNumSB)
independently as follows:

Cell A4 would have a different random number
referenced by all the calculations in row 4, and

. . SimNumSA<-rnorm(n, mSA, sdSA)
so on for all the rows of the simulation.

SimNumSB<-rnorm(n, mSB, sdSB)

3.2.2 How to assign shared random values

There are cases where the same input variable is used multiple times in a calculation, and in
these cases, that input variable should have only one random value for each iteration. For
example, if a common root:shoot ratio is used across multiple forest types, a random sample of
a possible R:S is selected at each iteration, and each forest type that requires a R:S value uses
that same value at that iteration.

Spreadsheet Formula R code




For shared sources, the random sample of an
uncertainty input is shared:

SourceA:

A3=NORM.INV(RANDARRAY(1,
n),$A$1,$A%$2)

SourceB:
B3=3A%3

In this example, iterations are in rows, and
every column within a row that uses this source
would reference cell A3 for a random value of
this source.

For sources (SourceA and SourceB) that are
shared, the random sample for the input will be
shared by both sources for each iteration of the
Monte Carlo simulation.

Considering a shared source normally distributed:
SourceA has mean=mA and sd=sdA

You can generate n random numbers of SourceA
as follows:

SimNumA<- rnorm(n, mA, sdA)

Each source that is shared with SourceA will
reference the random number drawn for that
iteration

SimNumB <- SimNumA

3.2.3 How to assign partially correlated random values

Input variables to a calculation may be neither shared nor independent, but rather partially
correlated, if these variables are calculated from a combination of shared and independent
sources. It is easier to conduct a Monte Carlo simulation beginning with the inputs that are fully
independent and fully shared, and this is what we recommend. However, if beginning a
calculation with partially correlated variables as inputs, such as emission factors based on
independent forest inventory but shared root:shoot ratios, then the Monte Carlo will require
partially correlated random samples for these variables.

Creating a matrix with more than two variables in Excel is possible but challenging (Zaiontz

2020).
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Spreadsheet Formula

R code

1. For covariance between two vectors X (A1:A30)
and Y (B1:B30), a 2 x 2 variance-covariance matrix
will be needed.

Matrix A
X Y
X | =VAR.S(A1:A30) =COVARIANCE.S(A1:
A30,B1:B30)

Y | =COVARIANCE.S(B1: | =VAR.S(B1:B30)
B30,A1:A30)

2. Calculate the mean for both variables with:

Matrix B
X =AVERAGE(AL:A
30)
Y =AVERAGE(B1:B
30)

3. Calculate a Cholesky decomposition of the
covariance matrix (Pistilli 2019). This will also be a 2
X 2 matrix.

Matrix C

X | =SQRT(Aw) =0

Y | =COVARIANCE.S(A21/C | =SQRT(A22 - C21?)
11)

Load the MASS package, which can develop
multivariate normal random numbers:

library(MASS)

First generate a 2 x 2 variance-covariance
matrix between vectors X and Y

A<-cov(chind(X,Y))

Generate n pairs of random values of X and Y
with the variance-covariance specified in A:

mvrnorm(n,c(mean(X),mean(Y)), A)

11




4. Calculate a random bivariate normal vector. For n
random number iterations, this would be a2 x n
matrix with the same formula in each cell. Highlight
cells to form a 2 x n matrix, type the formula:

=MMULT(C NORM.INV(RANDARRAY(2,n))+B

After typing the formula, pressing ctrl + shift + enter
on the keyboard will fill all of the cells in the matrix
with the function.

Each cell in the random bivariate normal vector is the
mean of that variable plus a random residual with the
desired correlation.

3.3 How to iterate

Random sampling, whether from a PDF or from data, can be repeated many times to generate
a distribution of estimates from which the uncertainty can be assessed.

Spreadsheet Formula

R code

Each calculation is repeated in rows (or columns).

Excel 365 has a RANDARRAY function which
facilitates this process.

The RANDARRAY formula is used in combination
with the formula used to sample from the data.

RANDARRAY(R,C)

where R is the specified number of rows and C is
the specified number of columns. For example, if
you are doing iterations in rows, R refers to the
number of iterations, and C is 1.

For example, if sampling from a normal distribution
with mean in cell A1, sd in cell A2, and the number
of iterations in cell A3,

= NORM.INV(RANDARRAY ($A$3,1),
$AS1, $AS2)

The advantage of RANDARRAY is that the formula
is represented only once, instead of separately in
each iteration. Having thousands of formulas
makes the file enormous and the execution slow.
You should probably invest in Office 365 if you
want to do Monte Carlo in Excel.

In the case of a normal distribution with a specified
mean (mean) and standard deviation (sd), a
random number can be generated as follows:

rnorm(1,mean,sd)

R uses matrices and arrays to store data.
Repeated calculations are handled by the number
of elements in the array (n). To generate n random
numbers, indicate n:

rnorm(n,mean,sd)
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The # sign can be used in place of
=NORM.INV(RANDARRAY) in simple formulas that
do not sample from a distribution. The # copies the
formula to fill the array. This is useful for
calculations that do not require random sampling.

This is effectively the same as the advantage of
RANDARRAY, the formula needs to be typed only
in the first cell, and it will autofill for every iteration.

Potential Pitfalls

If converted to a Google Sheet, all of the formulas using the # will have an error message called
ANCHOR ARRAY.

Using too few Monte Carlo iterations can provide imprecise uncertainty estimates. For your
emission reduction calculation, you can determine the number of Monte Carlo iterations needed
to achieve a desired confidence in your uncertainty estimates. In this example (based on the
Simple Example in Annex 1), uncertainty estimates are accurate to only about 20% of the
emission reduction even after 2000 iterations but approach 10% at 10,000 iterations (Figure
3.3).
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Figure 3.3. The similarity of Monte Carlo estimates depends on the number of iterations.




a) Median of Monte Carlo estimates of the emission reductions, calculated for numbers of
iterations up to 10,000 for 5 independent Monte Carlo runs.

b) (b) The half width of the 90% CI of the Monte Carlo iterations divided by the median ER

for the same 5 Monte Carlo runs.

c) The standard deviation of the 5 Monte Carlo estimates of emission reductions.

d) The standard deviation of the 5 Monte Carlo estimates of uncertainty.

3.4 How to interpret the output of the Monte Carlo

The Monte Carlo output can be analyzed to characterize the uncertainty in the results of the

calculation.

Find the 5th percentile of the outputs
Find the 95th percentile of the outputs

arMwDNPE

Find the median (50th percentile) of the Monte Carlo outputs

Calculate the half-width of the 90% confidence interval.
Convert this to a percentage of the median.

Spreadsheet Formula

R Code

Where Monte Carlo output is in cells B1:B10000

A1 =MEDIAN(B1:B10000)

A2 =PERCENTILE(B1:B10000, 0.05)
A3 =PERCENTILE(B1:B10000, 0.95)
A4 =(A3-A2)/2

A5 =A4/A1*100

Considering a vector of simulated numbers
SimNumcC (c1,c2,c3,...,cn):

Al<- median(SImNumC)

A2<- quantile(SimNumC , 0.05)
A3<- quantile(SimNumC , 0.95)
Ad<- (A3-A2)/2

AB<- abs(A4/A1)*100

Potential Pitfalls

A common mistake in interpreting Monte Carlo output is to report the uncertainty in the mean or
median of the distribution of the estimates. This mistake is a big one, typically underreporting
uncertainty by a factor of 100, because calculating uncertainty in the central tendency (e.g., the
standard error of the mean) involves dividing the standard deviation by the square root of the
number of “observations,” which is commonly 10,000 trials. The confidence in the mean could
be made arbitrarily small by increasing the number of Monte Carlo iterations, but the 90%
confidence interval of the increased number of estimates would remain just as wide. Increasing
the number of iterations improves the precision of the uncertainty estimate, but, interpreted

correctly, it does not make the uncertainty smaller.
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Step 4. Evaluate the contribution of each source to the overall

uncertainty

Understanding how much uncertainty is contributed by each source will help to identify
opportunities for reducing uncertainties. Evaluating the overall uncertainty with different inputs
assumed to be perfectly known is one way of assessing the sensitivity of the overall uncertainty

to uncertainty in each input.

Conducting a sensitivity analysis is facilitated by switches for each input that turn the associated
uncertainty on or off. The overall uncertainty can be calculated with different combinations of
switches turned on, rather than changing the formulae in the Excel file or the code in R.

Spreadsheet Formula

R Code

This is accomplished with an “IF” statement
referencing a cell used to switch a source “on” or
“off” for the sensitivity analysis.

For example, if cell A5 on the results page has the
value “on” or “off’, and cell B5 on the inputs page
has

IF(‘resultspage’A5="on", 1, 0.0000000001)

Each iteration of a random draw for the source is
multiplied by cell B5. If the uncertainty source is

“off”, 0.0000000001 is used instead of 0 to avoid
errors in the NORM.INV function.

The code relevant to an uncertainty source can be
activated using an “if’ statement.

Comparing the importance of uncertainty in the various inputs can be accomplished by
evaluating each one alone, with all other uncertainties turned off, or by removing each one, with
all other sources turned on. From the point of view of evaluating the benefit of reducing a
particular source in the context of all the others, it is more relevant to report how much
uncertainty is reduced by eliminating that source than to report how much that source
contributes alone, and this is the approach recommended in the FCPF Guidelines on the
Application of the Methodological Framework. However, it is easier to understand the results of
considering one source at atime. And if there is a need to revise one source,

The following table shows the results of a sensitivity analysis of the Simple Example provided in

the Annex.

Sources included Uncertainty

(Megatons C/year)

Uncertainty

(% of Emissions)

Reference
Level

Crediting

Period

ER Reference
Level

Crediting ER

Period
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R:S 2.80 2.50 0.29 17 17 17
CF 0.58 0.52 0.07 4 4 4
Sampling uncertainty 3.29 2.95 0.36 21 21 21
in EF

Emission factors 4.44 3.98 0.46 27 27 27
(from the above 3

sources)

Activity data 4.10 7.20 8.07 25 49 472
All sources 6.09 8.54 8.46 37 58 492

In this example, uncertainties are high relative to the emission reduction. This is because in this
example the reduction in emissions was small (1.7 megatons Clyear, see Fig. 4.1 for a
graphical explanation).
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Figure 4.1. (a) Uncertainties are 37% of reference level emissions and 57% of the monitoring
period emissions. (b) Because the emission reduction is small, the combined uncertainty is a
large fraction of the emission reduction (>400%).
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As shown in figure 4.2, uncertainties relative to the emission reduction will become smaller over
time if the emission reduction increases over time, assuming that the contributing uncertainties
are relatively constant over time (Neeff 2021).

Uer The three lines represent uncertainties in
400% estimating emission reductions, Ug, for different
scenarios of uncertainty in estimating emissions, U..
E.g., if Uz = 20% and if emissions are reduced by
300% 30%, then U, = 64%.
200%
100%
B4% m == e e o o o o o o o o o =
0% I
0% 10% 20% 30% 40% 50%

Emission reductions relative to the baseline (ER / RL)

Figure 4.2. Uncertainty in estimating emission reductions by scenarios of effectiveness in
reducing emissions below the reference level and by uncertainty in measuring emissions (from
Neff (2021), modified from FAO 2019)

Potential Pitfalls

If uncertainty estimates are not very accurate (based on a small number of Monte Carlo
iterations), then by random variation, the uncertainty with a source turned off can be slightly
higher than with the source turned on. Reporting each source turned on, rather than each
source turned off, will avoid this problem. Increasing the number of Monte Carlo iterations
makes the uncertainty estimates more precise (Figure 3.3).
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Annex 1. Monte Carlo Example in Excel

The simple example in Excel has two versions, one with a 2-year crediting period, and one with
a 4-year crediting period, which illustrates the high uncertainty associated with a short crediting
period.

Two forest types are included in the simple example, and deforestation is the only land-use
transition. The example illustrates a deforestation rate of 3% per year in both forest types.

Introduction

The first sheet of the Excel workbook describes the roles of the subsequent sheets.

This workbook provides an example of Monte Carlo error propagation for estimating the uncertainty in emission reductions for REDD+.
The data are not for a real country; the example is simple to make it easy to understand.

Input Variables sheet:

Ten years of Activity data are used for this example: The reference period is composed of two periods of 7 and 3 years. The crediting period is 2 years.
There are three land-cover types: two forest types (FT1 and FT2) and non-forest (NF).

The parameters for emission factors are the aboveground biomass per unit area, which are specific for each forest type, and the root:shoot ratio and carbon
fraction, which are shared for the two forest types.

For each uncertainty source in the AD and EF sheet, the standard error (SE) is back-calculated as: SE = mean * uncertainty (90 % Cl)/100 /1.96

AD sheet: Monte Carlo iterations for Activity Data.
EF sheet: Monte Carlo iterations for Emission Factors
The number of simulations is 10,000. Of these, 9,990 rows are hidden for ease in navigating the spreadsheet.

ER and Sensitivity Analysis sheet:
The AD and EF iterations are combined to estimate the Emission Reduction.
Conduct a sensitivity analysis by turning uncertainty sources on or off using switches, updating the Monte Carlo sampling, and copying the results into the table.

Input Variables

The Input Variables sheet has all the data needed for the calculation of emission reductions.
Table 1 is activity data, or the . area of land converted from forest type 1 to non forest (FT1-
NF) and the area of land converted from forest type 2 to non forest ( FT2-NF) for the total 10
year time period: seven years of reference period and three years of monitoring period. Table 2
has emission factors including carbon fraction (CF), root to shoot ratio (R:S), and above ground
biomass (AGB).

Uncertainties are given as the half width of the 90% CI. The SE is calculated from the

uncertainty and the value of the estimate, although we recognize that in reality, the uncertainty
is calculated from the SE.
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1]
2 4
3 , Table 1. Activity Data and associated uncertainties Table 2. Carbon Densities, Carbon Fraction, R:S and associated uncertainties
4 | Period | Convertion AD U Value U
5 | 1 FT1-NF 739,643 34 CF 0.47 4
6 | (7years)| FT2-NF 248,302 46 R:S 0.321 67|
7 | 2 FT1-NF 232,293 49 AGB_FT1 263 20
8 | (3 years) FT2-NF 70,935 60 AGB_FT2 150 38
g | 3 FT1-NF 174,937 55 AGB_NF 26 29
10 (2years)| FT2-NF 54757 67
11 . l
12|
13|
14 |
15 |
16
17|
18 |
19
Introduction | Input Variables | AD EF ER and Sensitivity Analysis ) 4

Activity Data (AD)

In the Activity Data sheet, forest transition data for each time period are simulated using Monte
Carlo Simulation as: =NORM.INV(RAND(), B$5, B$7*B$1)

NORM.INV(probability, mean, sd) gives an inverse of the normal cumulative
distribution, at the specified probability, mean, and standard deviation (sd).

RAND() generates uniform random normal values between 0-1.
B$5 is the mean of the value.
B$7 is the standard error.

B$1 is a multiplier controlled by a switch in the ER and Sensitivity Analysis sheet.
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B9 v fe || =NORM.INV(RAND(),BS5, B$7*BS1)

A B C D  E | F G H

1 |Multiplier 1 al 1 1 1 1

2 Period 1 (7 years) Period 2 (3 years) Period 3 (2 years)

3 | Deforestation Deforestation Deforestation

4 ‘ FT1-NF FT2-NF FT1-NF FT2-NF FT1-NF FT2-NF

5 |AD (ha) 739,643 | 248,302 232,293 70,935 | 174,937 54757

6 |U (%) 34 46 45 60 55 67

7 A SE 128305 58275 58073 21715 45090 18718

8 |lterations

g 1 839422 270794 222858 91907 102908 37920

10 2 717687 306853 183361 61983 72253 52898

11 3 548353 204995 243763 56959 126084 71099

12 4 697787 196958 264925 80956 181057 91994

13 5 663700 233860 134214 55382 122318 37432

14 ; 6 673559 229470 151467 98678 150497 46524
1000«‘ 9997 713932 293956 205358 79225 156485 61649
10006 9998 686580 157331 211198 44622 93772 66896
10007 9999 718346 267479 271383 110406 212800 48783
10008 10000 633855 227603 184761 62645 157602 56779
10009

\ Introduction Input Variables AD \ EF ER and Sensitivity Analysis

Emission Factors (EF)

In the Emission Factor Sheet, R:S, CF and AGB for each forest type are simulated using Monte
Carlo simulation.

Belowground biomass (BGB) is calculated by multiplying each simulated AGB value with the
simulated R:S value.

Total carbon for each land cover type is calculated as the sum of AGB and BGB.
Emission Factors (EF) are calculated as the difference in total carbon between land cover
types. Column M depicts the transition from forest type 1 (FT1) to non forest (NF). The process

is repeated for FT2-NF in column N.

The cells below row 10 are simulated values for each input variable. Multipliers in row 8 are
controlled by switches on the ER and Sensitivity Analysis sheet.
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B11 v fe | =NORM.INV(RAND(),$B%3,5D$3*3838) |

A : ¢ D 3 F 6 | H | J K | L M| N
1 Value U(%) [SE
2 |CF 047 4 001
3 RS 0321 67 0.1
4 |AGB_FT1 (ton/h 263 20 26.84
5 AGB FT2 (ton/h1 150 38| 29.08
6 |AGB_NF (ton/ha 2 9| 38
7 R:S Uncertainty CF Uncertainty Sampling Uncertainty Sampling Uncertainty Sampling Uncertainty
8 |Multiplier 1 1 1 1 1
gl Parameters Simulated Carbon Densities: Forest |  Simulated Carbon Densities: | Simulated Carbon Densities: |FE: FT1-NF |FE: FT2-NF

Total C Total C
10/ Iterations R:S CF (AGB+BGB) (AGB+BGB)
11 1 032 0.48 256 82 162 92 30 58 18 6 1 151 47
12 2 041 0.46 261 106 170 138 56 90 28 11 18 151 12
13 3 0.18 0.46 167 30 90 128 23 69 27 5 15 75 54
14 4 032 048 295 94 186 198 63 125 28 9 18 168 107
15| 5 0.14 048 290 v} 159 155 2 85 20 3 11 148 74
\ Introduction | Input Variables ‘ AD \i‘ ER and Sensitivity Analysi ‘ ® ( b

ER and Simulation

Emissions for each forest transition are calculated by multiplying Activity Data (AD) from the AD
sheet by Emission Factors (EF) in the EF sheet.

H - =
B4 - o I =ADLBE.*EFI.M11I
A B c .
1 |E
2 Period 1
3 [1d sim FT1-NF FT2-NF [
4 16904942 2507280
5 | 2 9276812 1012690
6 | 3 18355428 1141584
7 a 14278623 1788756
8 | s 15418026 2178583
g | 6 14756366 2966326
10000 9997 10967077 1026876
10001 | 9998 15375514 2164624
10002 9999 11635320 1090530
10003 | 10000 15471274 1333783

13463090.5 1716309.5
9143658.75 [53009.35 1:
12660940 4 27095619 -
4T758640.825 BTYOTTF0.275 o4
| Instruction | Crata | AD | EF | ER and Sensitivity Analysis I—

1. Inrow 10006, the median of all simulations for each forest type is calculated as

=MEDIAN(B4:B10003)

2. Inrow 10007, the 5% percentile of all simulations for each forest type is calculated as
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=PERCENTILE(B4:B10003, 0.05)
3. Inrow 10008, the 95% percentile of all simulations for each forest type is calculated as

=PERCENTILE(B4:B10003, 0.95)

4. Inrow 10009, the half width of the 90% confidence interval is calculated as: (95
percentile-5 percentile)/2

i.e. (B10008-B10007)/2

5. Finally in row 10010, uncertainty is calculated as: (half of 90% confidence
interval/median)*100

i.e. (B10009/B10006)*100

B10006 - fe | =MEDIAN(B4:B10003) |
A B C D E F
1 e
20 Period 1 Period 2 Pe
3 IdSim FT1-NF FT2-NF FTI-NF_ | FT2-NF FT1-NF
4 1 12579300 2145060 19711800 5966694 718
5 | 2 11624181 2053586 18192807 5124254 708:
6 3 12199296 799607 14862848 2329076 493
7 | 4 15251342 1491441 14820434 4445804 845,
8 5 12930120 1401435 16500603 3238515 951,
9 6 11422763 1956069 15082771 4544586 821
10000 9997 14190176 913164 20319442 1728174 745!
10001 9998 17154368 1587364 22550704 3345243 7441
10002 9999 12808888 1970360 17565880 3586100 959
10003| 10000 11801514 1840880 15995044 3159120 773!
10004
10005
1717174.5 17394955  4132576.5 823
9187692.6 9620252  11866981.5  2331686.6 56404
18695230.75 2662617.65  23989526.25  6419677.6 114040
4753769.075 850296.225  6061272.375  2043995.5 288179
35.4 49.52 34.85 49.46 3

Switches

In the image below, the final uncertainty of Emission Reductions (cell X10009) is highlighted in
blue. When the switches in cells D10012:D10017 are ‘on’ the related multipliers are set to 1.
When the switches are ‘off’, the multipliers are set to 0 (or 1E-10, which is close to 0, and avoids
errors in the excel formula). The uncertainties change slightly every time the workbook updates
and the random values are resampled.
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‘ A B C D E F | 6 | B | | )
10009 Uncertainty (%) % % I o7 5 74 31 41 41459
10010
10011 {Parameter Switches
10012 [R:s Uncertainty on v
10013 CF Uncertainty on
10014 Sampling Uncertainty (AGB)

10015 AGB of Forests Jon
10016 Activity Data Uncertainty
10017 Activity Data lon
10018
10019/ Sensitivity analysis

Uncertainty Unc.ertamty Change from Unc.ertamty

%), Parameter with one all with one

10020 ( turned off (%) | Parameters | turned on (%)
10021JAll on 417.94 (RS Uncertainty 413.74 4.2 13.58
10022§All off 0 CF Uncertainty 414.59 3.35 3.49
10023] Sampling uncertainty 303.27 24,67 17.11
10024 Emission Factor uncertainty 395.47 241 233
10025 Activity Data 2.38 395.56 395.47

Inroduction | Input Variables | AD | EF ’ ER and Sensitivity Analysis | (3

This image depicts what happens when R:S uncertainty is turned off in the EF tab.

B I =ROUND{NORM.|NV{RAND{},5353,5c53=5353},2}|

B11 -
A B C | D | E | F [ G
6 |ace nNF (] 26| 3.8 29] |[BcE_MF (ton/ha) B8.34€
7| R:S Uncertainty CF Uncertair Sampling Uncertainty Sampling
8 | Switch 1 1 1
Simulated Carbon Densities: Forest Simulat
e | Type 1L
Total C
10 Iteration BGEB (AGB+BGE) AGE
11 87 159 14
12 | B0 1a7 13E
1= | B9 172 144
14 | 81 154 16E
15 | B0 171 135
16 | B8 1a7 14E
10007 | 77 149 122
10008 80 155 10s
10009 82 163 202
10010 51 122 A7E
10011
Instruction Data AD EF ER and Sensitivity Analysis | (e

The contribution of each source to the overall uncertainty can be determined by starting with all
sources on and turning off each source one by one, or by starting with all sources off and
turning them on one by one. The sensitivity analysis table is populated with the values copied
from cell J1009 with different combinations of switches on or off.
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A B | C D E F
10011 |Parameter Switches
10012 R:S Uncertainty on -
10013 CF Uncertainty 0 |
1001% Sampling Uncell;to—affiﬁfy_(’KGB]
10015 AGB of Forests lon
10016 Activity Data Uncertainty
10017 Activity Data |on
10018
10019 |Sensitivity analysis
i Uncertainty |Change from| Uncertainty
Uncertainty i i
%) Parameter with one all with one
10020 turned off (%) | Parameters | turned on (%)
10021 All on 417.94 R:S Uncertainty 413.74 4.2 13.58
10022}All off 0 CF Uncertainty 414.59 3.35 3.49
10023 Sampling uncertainty 393.27 24.67 17.11
10024 Emission Factor uncertainty 395.47 22.47 22.38
1002§ Activity Data 22.38 395.56 395.47
| Introduction ‘ Input Variables | AD ‘ EF \ ER and Sensitivity Analysis J ® <]
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Annex 2. Monte Carlo Example in R

https://github.com/mark78b/MCS in R/

The Simple Example in R is the same as that in Excel, showing deforestation rates of two forest
types.

1. Library loading

To run the current R code, load the following libraries:

library(matrixStats)
library(gridExtra)
library(reshape)

2. Reading of inputs by Forest Type and Period

Read the specific values of AD and EF (and associated uncertainties) by Forest Type (FT) and
Period (P). Read csv Tables of AD and EF as follows:

rm(list=Is(all=TRUE))

### Address to read inputs
setwd("C:/Desktop/Inputs”)

### Reading of inputs

# AD inputs

BaseAD <- read.csv("1_Activity_Data.csv")
dim(BaseAD)

BaseAD_4yr <- read.csv("1_Activity_Data_4yr.csv")
dim(BaseAD_4yr)

# EF inputs
BaseEF <- read.csv("2_Emission_Factors.csv")
dim(BaseEF)

3. Simulations of random numbers of AD and EF

A key step of MCS is the generation of random numbers of AD and EF. To generate random
numbers it is necessary: (i) the estimator of AD and EF and, (ii) the standard error (SE) of AD

26


https://github.com/mark78b/MCS_in_R/

and EF estimators. Nevertheless, in most cases, only uncertainties of AD and EF are reported.
So it is necessary to compute SE of AD and EF as following:

. 1/21C 100 U 196 x ¢ 100 Ux 0
= — = = = —_———
5 5 7= 196x 100
1/21C 196x0 Ux6
U=—"-—x100 = ———x100 = 0 =
2 2 100

U = uncertainty
IC= confidence Interval
6= estimator of AD or EF

o= standard deviation

Once SE of AD and EF have been computed, it is possible (i) to generate vectors of random
numbers of AD and EF per FT-P, (ii) to estimate emissions per FT, and (iii) to save vectors of
simulated emissions by FT in matrix format.

Following is show how to simulate random numbers (of normal distribution, using mean and
standard error) of independient AD and partially correlated EF:

HH B 1. Simulation of Activity Data  ###H#HH#HHHHHIRHIHHIH

#### Computing of SD of AD
BaseAD$DesEstDA<-abs((BaseAD$U_AD_per*BaseAD$AD_ha)/(1.65%100))

### Number of simulations
n<-1000000
MatrizDef<-seq(1:n)

### Switch for AD if it is 1 incorporates MC and if it is O then use simple value
SWITCH_AD =1

### Simulations of AD per period and conversions

for (i in 1:length(BaseAD$Code))

{
DAsim<-rnorm(n,mean=BaseAD$AD_ha][i], si=BaseAD$DesEstDA[i]*SWITCH_AD)
MatrizDef<-cbind(MatrizDef,DAsim)

}

### Conversion of AD Matrix to DataFrame
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Matrix_AD<-as.data.frame(MatrizDef)

### Correct colnames of AD-Dataframe per "Period" and "Transition"
colnames(Matrix_AD) = ¢("ld_sim_AD",
"AD_P1_FT1_NF""AD_P1_FT2_NF",
"AD P2 FT1 NF""AD P2 FT2 NF",
"AD_P3_FT1_NF","AD_P3_FT2_NF")

HH R HHHHH R 2. Simulation of Emissions Factors ###HH#HAHH 7T

### Simulations and CF, R:S and AGB per Forest Type and Transition
### Matrix for saving simulated CF, R:S and AGB

MatrizEF_Def <-seq(1:n)

### Switches for EF

SWITCH_EF =1

### Simulations of CF, R:S and AGB

for (i in 1:length(BaseEF$Value))

{
EF_Sim<-rnorm(n,mean=BaseEF$Value[i], sd=BaseEF$SE[i[*SWITCH_EF)
MatrizEF_Def<-cbind(MatrizEF_Def,EF_Sim)

}

### Converting the "CF, R:S and AGB" Matrix to DataFrame
Matrix_EF<-as.data.frame(MatrizEF_Def)

#i# Correct colnames of "CF, R:S and AGB" Dataframe
colnames(Matrix_EF) = ¢("ld_sim_EF","CF","Root_S","AGB_FT1","AGB_FT2","AGB_NF")

HHHHHH R R R R
### Simulation of BGB, Carbon Densities and EF per Transition

### Simulation of BGB per stratum

Matrix_EF$BGB_FT1 <- Matrix_EF$AGB_FT1 * Matrix_EF$Root_S
Matrix_EF$BGB_FT2 <- Matrix_EF$AGB_FT2 * Matrix_EF$Root_S
Matrix_EF$BGB_NF <- Matrix_EF$AGB_NF * Matrix_EF$Root_S

### Simulation of Carbon Densities per stratum
Matrix_EF$C_FT1 <- (Matrix_EF$AGB_FT1 + Matrix_EF$BGB_FT1 ) * Matrix_EF$CF
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Matrix_EF$C_FT2 <- (Matrix_EF$AGB_FT2 + Matrix_EF$BGB_FT2 ) * Matrix_EF$CF
Matrix_EF$C_NF <- (Matrix_EF$AGB_NF + Matrix_EF$BGB_NF ) * Matrix_EF$CF

### Simulation of EF per Transition
Matrix_EF$EF_FT1_NF <- Matrix_EF$C_FT1 - Matrix_EF$C_NF
Matrix EF$EF _FT2_ NF <- Matrix_EF$C_FT2 - Matrix_EF$C_NF

### Filtering of simulated EF per Transition

Matrix_EF1<-data.frame(ld_sim_EF =Matrix_EF$Id_sim_EF,
EF_FT1_NF =Matrix_EF$EF_FT1_NF,
EF_FT2_NF =Matrix_EF$EF_FT2_NF)

length(Matrix_EF1$ld_sim_EF)

Estimation of simulated emissions

Using the AD and EF simulated, emissions per Land Use transition and period are estimated:

### Merge of "AD-Dataframe™ and "EF-Dataframe”
Table_Emi<- merge(Matrix_AD, Matrix_EF1, by.x = "Id_sim_AD", by.y = "Id_sim_EF",all=T)

### Estimation of Emission per Period and Transition annualized
yearP1=7
yearP2=3
yearP3=2

Table_EmI$SEmi_P1_FT1_NF <- Table_Emi$AD_P1_FT1_NF * Table_Emi$EF_FT1_NF
Table_EmI$SEmi_P1_FT2_NF <- Table_Emi$AD_P1_FT2_NF * Table_Emi$EF_FT2_NF
Table_EmI$SEmi_P2_FT1_NF <- Table_Emi$AD_P2_FT1_NF * Table_Emi$EF_FT1_NF
Table_EmI$SEmi_P2_FT2_NF <- Table_Emi$AD_P2_FT2_NF * Table_Emi$EF_FT2_NF
Table_Emi$Emi_P3_FT1_NF <- Table Emi$AD_P3 FT1_NF * Table Emi$EF_FT1_NF
Table_Emi$Emi_P3_FT2_NF <- Table Emi$AD_P3 FT2_NF * Table Emi$EF_FT2_NF
dim(Table_Emi)

HHHHH R R R R
A 3.1 Simulation of Emissions of Base Line (2 Periods,7 and 3 years) ####

### Selecting of emissions for Base Line period
Table_Emi_FREL<- Table_Emi[, ¢(1,10:13)]
Table_Emi_FREL$FREL<- ( rowSums(Table_Emi_FREL[,c(2:5)]) ) / (yearP1+yearP2)
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5. Estimation of quantiles and uncertainties

Using vectors of simulated emissions it is possible to estimate associated lower/upper
uncertainties as follows:

0.025)-E
'l'lf = |Q(A—)| X 10

0.975)-E
Ui p= |Q(—A)| x10

0 and U _su 0

U_inf= Uncertainty on the left side of the simulated emissions
U_sup= Uncertainty on the right side of the simulated emissions
Q (0.025)= quantile 0.025 of simulated emissions

Q (0.975)= quantile 0.975 of simulated emissions

E= Monte Carlo simulated emissions

(i) so, lower/upper quantiles of Base Line emissions can be estimated as:
Q_05_FREL <-quantile(Table_Emi_FREL$FREL,0.05)[[1]]
Q_95_FREL <-quantile(Table_Emi_FREL$FREL,0.95)[[1]]

(ii) also, lower/upper uncertainties of emissions Base Line can be estimated as:
half_Cl <- (Q_95 FREL - Q_05_FREL)/2
U_FREL<-abs( half_CI/ median(Table_Emi_FREL$FREL))*100

6. Saving of quantiles and uncertainties

Quantiles and uncertainties of emissions by period and median emission are saved:

### Saving of Base Line emissions and associated quantiles and Uncertainties
Table_FREL<-data.frame(Period = "FREL",

Emission = median(Table_Emi_FREL$FREL),

Q_05 =round(Q_05_FREL , digits = 3),

Q_95 =round(Q_95 FREL , digits = 3),

Uncertainty = round(U_FREL, digits = 2))

7. Probability density function of emissions by period and Base Line
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Finally, probability density functions (PDF) of emissions by period and for median emissions are
plotted:

### Saving of PDF of Base Line emissions
setwd("'C:/Users/Invited/Outputs")

pdf("1_Emissions_Uncertainty FREL.pdf")
par(mfrow=c(2,1))
hist(Table_Emi_FREL$FREL,
main="Histogram of FREL",
xlab="Average annual emissions from deforestation (Ton of CO2e)",
cex.lab=1, cex.axis=0.8, cex.main=1,
#border="blue",
col="green",
las=1,
breaks = 200,
prob = TRUE)
lines(density(Table_Emi_FREL$FREL ))
dev.off()

A draft version of the R code shown above is available at the following link:
https://github.com/mark78b/MCS_in_R/
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